Context Based Information Retrieval From Files
Arvind S. Gautam, Kartik Vishwanath, Dr. Yugyung Lee

{kvktb,asg3hb,leeyu}@umkc.edu

Abstract

We generate huge amounts of data today. The usefulness of data is through the knowledge that may be extracted from it. Apart from generation of data, proper organization and analysis is required to retrieve useful information from it.

In computing systems data is stored within files. By itself a file is a highly localized organization of related data that is isolated by the start and end of the file. Related data may also be spread over multiple files. Presently the file systems in most operating systems in use employ a directory hierarchy to enable users to organize their files. Usually represented as a tree, this organization scheme provides location of a file as the prime organizational characteristic. This type of organization, though useful enough to be used widely throughout file-systems, still fails to recognize relations between files to actively organize them. The present categorization of files depends on either the user or applications to place related files at smaller hierarchical distance (e.g. – in a single directory/subdirectory). The file system itself doesn’t play a role in actual arrangement of files, except serving as little more than an indexed repository for them.

This paper proposes an architecture that enables a file system to organize files by mining relations between them. Several file and file-usage attributes are analyzed by the architecture to estimate such relations and therefore, to categorize files based on such relations thus discovered. The data contained in the files grouped together may be related by usage, type, location, etc. This also simplifies the task of Information retrieval as the underlying data contained in files, is already organized according to their usage semantics.

1.
Introduction

Data organization, analysis, mining, information retrieval, etc. all these methods aim to achieve increased efficiency in making data useful. In computational systems today, storage and memory used are larger and faster than ever, yet our requirements continue to grow. Somehow we find ourselves running out of memory and disk-space even with the largest of storage units. This only underlines the practical fact that we are forever generating data. With advances in technology and increase in research efforts, our pace of data generation only increases each time. All of the data that we come up with may not be equally useful. Data is filtered and analyzed to retrieve information from it. In this process, a lot of data may be discarded as all data doesn’t equally contribute to the information extracted. The information that we get may be subjected to further analysis and manipulation to extract knowledge. This is the goal of data mining processes. The usefulness of data is therefore defined through the knowledge that may be extracted from it. As has been stated earlier, all data may not be equally useful towards extraction of a particular axiom, but all data is equally important towards overall knowledge extraction. That is to say that facts may be derivable from different parts of data, therefore all data becomes generally useful.

To uncover interesting facts in data, various pattern recognition and association mining techniques are employed. Data that is related in a specifically recognizable manner is grouped or clustered together. This is useful as it allows an observer to study variations and patterns in available data that can be represented as a single type. Such clustering of data can prove highly useful also because the clusters themselves are defined by the relations between data forming the cluster. That means that this data has a high probability of being used as a unit. This gives us twin benefits –

· Patterns and associations may be observed between clusters

· A cluster forms a directly usable independent unit

The first point becomes apparent from the paradigm of data analysis and mining, the second point though has to be viewed through an information retrieval point of view. Any kind of work employs and generates data. A task requires the use of task-specific data. As an instance, while working on a software project a programmer would need all the program files related to that project. Also required may be documentation and log files relating to the same. In any one instance of such work pattern, it may be unusual for a programmer to refer data that is completely unrelated to the scenario. We call this ‘scenario’, the context. Context encapsulates the environment as well as the user’s requirements and preferences (the user’s work profile in the present environment).

Information retrieval deals with indication and retrieval of information on the basis of the present context. In this statement “present” refers to the context in which the system is queried. This does partial matching and returns results based on the relevance to the context. For this capability, the system itself should be able to determine the relevance of the data or information to a context. This is different from data retrieval systems that do an exact match and return the result. Probabilistic matching and retrieval also works on classification or packaging of data. To belong to a class the data may not have to have all the attributes of the class, but data belonging to a class will have less attributes in common with a different class than it would with the class that it belongs to. This can also mean that such classification of data is fuzzy at best, and the boundaries of a class are changeable through the redefinition or re-ordering of its attributes.

Computing systems store data in files. The file therefore is the first step towards the organization of data in a digital system. Data in a single file is highly related and usually falls under the same type, indicated by the extension of the file or the file header. A user’s data requirements may spread outside of a single file though, and projects branch into multiple files. Files in a storage system are managed via a file system. These file systems keep track of various file attributes through the help of which a user can organize his files in the storage, as described in the solution section.

A file to context relationship is usually determined manually by the user by checking the attributes of the file. This is a laborsaving device, as this doesn’t require the user to go through the content of each file to check if the file matches the requirements of the task at hand. This suggests that a user’s file-access and usage pattern, therefore the relation to context is reflected in such attributes of files. We make use of these attribute values to determine a user’s file access pattern and therefore cluster files accordingly. These clusters are based on the relation of files to contexts. A cluster would relate to a singular context that handles a single type of job.

Thus in a particular context, the cluster relating to it may be presented to the user. This, as has been described before, gives rise to an ‘information retrieval’ pattern of file access. Implementing the architecture making use of heuristics that cluster according to record-able and measurable file attributes will enable a file system to probabilistically relate files to contexts and intelligently provide a user with what is required.

2.
Related Work

Most of the related work done pertains exclusively to file pre-fetching. Some interesting aspects of these studies are applicable to this research. Some of the research in this field use heuristics similar that work on some of the file attributes, as suggested in this project, but to a different end. Few of the studies though try to find semantic linking between files.

Some work [1], [4], [5] deal with the subject of effectively predicting files to be pre-fetched. Discussed are methods for building application trees for each application. Distinct file use patterns are cached. When an application is used, its file access pattern thus observed is compared with the cached patterns and on discovering a similar access pattern in the repository, pre-fetching is done to retrieve those files that have not already been fetched but are required according to the reference file-access pattern. These studies also take into account cache size and splits trees if need be. In cases where a wrong pre-fetch occurs, the system analyses how ‘close’ the guess was. For instance in [1] the ‘closeness’ of the match is defined by a heuristic that states that close matches have 40% files in common. If the match is deemed close enough then the saved tree is discarded and the session tree formed replaces it as this suggests a recent and probably more accurate access pattern. Kroeger et al. [10] propose different models for forming file access patterns such as probability graphs and evaluate each model.

Our research has incorporated some of the techniques described, such as building a session tree to deduce file usage frequency, into our architecture. But our overall goal differs substantially from those of the research discussed above. These approaches have a CPU and performance oriented approach and do not try relating data to context. The associations made are between data and applications rather than to task or context. Our research is not restricted to predicting file usage based on frequency of access, but achieves a semantic linking of disparate files that are part of the same job. The base assumption used by us is that relationships between different kind of data extends beyond their origin, they might belong to different applications, thus different execution trees, but still might be very closely related from the user perspective. We want to club such together as appropriately as possible.

Our work can be integrated with concepts of server-less file systems [6] to realize the goal of giving the users their information everywhere. Server-less file systems as discussed in [6] store the user files locally, with every system maintaining a list of files and their locations. The files are replicated minimally and are served on request from wherever they are stored natively. We propose that such systems can be used more effectively if they transfer data in a context-aware fashion rather than making the system fetch individual files on demand. Such an approach will also be intuitive for the user who can specify the high level task and get all related files at once.

Chen and Finin [7] describe a framework for an agent based pervasive computing environment. There is an intelligent broker that accepts information from devices and agents and reasons over this to maintain a coherent model of the system. Our solution can be integrated into such a framework. The broker can accept information regarding file usage and inference the semantic interlinking of the files. The broker can also use the file access patterns to determine context and serve the user in a better manner.

User profiling is not just restricted to local files and systems. This is an active area of research and is being applied to web browsing too. Chen et al., [8] use this approach to analyze the web browsing habits of a user and present users with better service on the web. Kim et al., [9] dwell on the approach to user profiling and usage of that interest profile of a user in providing better web browsing experience to the user. The paper deals with the idea of analyzing user interests in short term and long term spans.

Semantic relationships between files can best be described by the actual content held by them, and there is hardly any other substitute for this kind of analysis other than actually looking into the files themselves. These papers provide some insight on how to go about this method and build a user-interest model. A heuristic of the architecture uses file contents to determine the relation of the contained data to a specific context.

Anquetil et al., [2] present an interesting method of clustering files. It extracts concepts from filenames and uses them to group files. We agree with the idea proposed in the paper that filenames are good indicators of semantic similarity between files, thus we also use some of the techniques presented in the paper in our architecture to create data clusters that are related to context

. 3.
Intelligent File Management
File systems leave the task of file management entirely to the user, requiring him or her to spend time organizing files in a file system manually. This indicates a passive system that does not act on its own but serves as an organizational structure wherein the user has to actively organize data. We propose the concept of clustering data on the basis of context in which the data is used. This provides an active and intelligent context related handling of data within a computing architecture.

The Context related file clusters form a wrapper layer on top of files in a file system. In a computing framework we can then think in terms of context related file clusters being managed instead of management of individual files across the framework. Context defines strong and meaningful relations of data contained within files with users and environments. Files related to a single task can be clubbed together into a single context related file cluster for better context-based organization. Resource management also improves as resources are allocated and reserved on the basis of user context requirements. It is simpler for context enabled system to decide which files are to be made available as this involves just looking up the complete context related file cluster of the working part of the complete set. Files not relating to any such file cluster may be seen as outliers, and be appropriately tagged and dealt with. Context file clusters may be classified with priority settings, replacements, substitutions, size, etc. enhancing the management and organization capabilities of file systems.

A semantic relationship that defines a meaningful context related link between files would be a requirement of files within a single cluster representing work pattern in a single context.

For Example, documentation of a project and the code itself are related. The root of the relation is the project itself. The Project itself forms the lowest common denominator between the Code and the Documentation. This forms a semantic relationship between these two types of data.

There are certain indicators and organizational structures provided by the file system that people use to classify data according to its related context. A general data “type” classification is sometimes followed to organize files on the system. As an example we can state a common observation such as separate logical storage locations for music files and spreadsheets. Such a scenario might be visualized as a file system where different directories are created for different types of files of a certain user.

[image: image1.png]

Here directories have been created that separate different types of files. This also might be called file extension based classification as most of the times file extensions effectively indicate the file type.

Classification may also be based on file name. File names are commonly indicative of the content or the purpose of the file. This information can help relate the file to its correct context.

We define a session as a continuous block of time within which a single task is carried out. Files created, modified or accessed in a session may be related through that task. For example: While working on a project, a user may access most of the files pertaining to the project in parallel. A file creation event in the same session could suggest creation of a new file for the same project. For this reason the creation/modification and access times of files may serve as a helpful piece of information in classification of files into context-based clusters.

We observed that applications that have maximum usage and data handling employ sophisticated data organization mechanisms, or provide enough information to the user for him/her to be able to easily classify the data provided by the application.

A survey was conducted where we asked users to determine how computer users usually organize their files in a file system. The results of the survey are displayed below:

	Relative ranking of applications based on usage.

	Email
	Word Processing
	Compilers
	SpreadSheet

	1
	2
	3
	4

	Number of respondents using user-defined locations for their files and users storing their files at default locations (as provided by the application)

	User Defined Path
	Default Location

	26
	1

	Number of directories created by the user in their storage

	1-5
	6-10
	11-20
	Over 20

	5
	8
	10
	8

	Number of users organizing given files according to file type and file name

	File type
	File name

	19
	16

	The sub-directorial depth used by respondents in their personal storage

	0-2
	3-5
	6-10

	9
	18
	3

	Naming convention that people use

	Random
	Project Name
	Generic name + Seq. number
	Generic name
	Name + date

	2
	19
	3
	5
	7

In this survey, maximum number of people voted E-mail as their number one application. Looking at a usual E-mail client, we see that it provides many methods of data organization. Even with a plethora of options on how to organize your mail in an E-mail program, it also displays enough information about the mails themselves for you to be able to organize them further if required.

The user defined paths and number of directories most users create gives us a strong case to incorporate locality as a heuristic for file cluster creation. The directory-tree depth indicates the amount of organization of files. Users use both – file names and file types to organize their files effectively. A popular naming convention is naming the file according to the name of the task it relates to. This indicates that even file-names and file types (extensions) can be used as strong heuristics for categorization of files into context related file clusters.

Two Layer Architecture

We propose a two-layer solution for clustering files based on their relation to context. The layer 1 analyses the file access patterns of the user and generates a frequency analysis of the file usage with the recency of access. Layer 2 focuses on clustering files according to related context. A diagrammatic representation of the architecture is given.

The layer 1 consists of the mechanisms that employ statistical analysis and give results based on file usage frequency and recency of use. File use is according to context, which gets recorded in the statistics. The input to this layer consists of file events captured from the underlying operating system. A session tree is generated to show the file access pattern for a single session of user activity. Session trees for a certain period are cached. Recent session trees are given more importance.

The following are different session trees for different user sessions. Here ‘S’ denotes a session, ‘A’ denotes applications. The numbers in the parentheses indicate the weight assigned to the node.
Algorithm for Layer 1

(1) The session tree is generated using Operating system file events.
(2) For the weight (These weights are assumed to be equal to one unless the user increases their importance by increasing the weight) of each node in the current session tree

a. Multiply the weight of the corresponding node (if it exists) in the previous cached session tree by a standard value < 1 (Recent session tree is given more importance).

b. Add the two weights and divide the result by sum of the weights of the node in the two trees (to normalize the result). [Formula: (0.75x(weight of node in previous session tree) + (weight of node in present session tree))/((weight of node in previous session tree) + (weight of node in present session tree))]

c. The resultant is attached as the new weight to the node

(3) Nodes present in the previous session tree and not found in the current tree are simply added to the resultant tree.

(4) The resultant session tree formed by the process mentioned above is cached.

This tree is used for subsequent use of the algorithm as the previous session tree. This approach bubbles up the most important and continuously used files for a user as increased weights of their nodes in the tree. By setting threshold weights we can derive clustering heuristics based on file usage characteristics exhibited by the tree. This list of files is fed to layer 2. The second layer takes each file and maps it to its file cluster based on context it relates to.
Our approach depends on several heuristics, some of which have been in use for a long time in disparate applications and environments, and some that we have devised to be used here. Here we elaborate upon them and see how they will contribute towards discovery of semantic relationships between files.
Locality – It is observed that most applications store files pertaining to a single project under a single location. It has been explained in this paper how users too separate files related to different contexts by placing them in different folders. The difference in context may be by purpose, environment or user. This characteristic could be given a measurable and appreciable weight and could prove to be a good indication of a contextual relationship between files.

Creation time – It is observed that files that are related have a probability of creation times being closely spaced together. Files relating to a context are usually created in the same context. A context is temporally continuous. It may be derived that files created in the same period of time relate to the same context.

Access Patterns – Users have been observed referring between different files while working on a project. This entails parallel access of files that are related to each other through the same project. Such a file access pattern is recorded when a user can relate the data in the different files. The related data is related via the context the file is formed in; therefore these files can be clustered and associated with a single context.

File Nomenclature – File names are seldom meaningless string of characters because humans find is easier to remember pronounceable words that have attached semantics, which may be associated with some other memory (picture, sound, etc.). Along with this, they may also serve the purpose of self-identification; that is, a user can associate file names to their use-context. In this case, files having similar names might be related in context. This observation may be applied as a heuristic along with other calculable methods to determine file-context relations.

File Content – A complex heuristic could take the contents of user files into consideration. Matching file content can give by-far the most accurate degree of relationship between two files. This suggests an almost NxN mapping, but the work area for this heuristic is reduced to quite an extent by applying it to the resultant clusters of other heuristics. That is to say, this heuristic works on a reduced set of files.

These are different characteristics, attributes, and information regarding files and their organization and usage by users that can help in clustering files on the basis of use-context. Different heuristics will have different clustering ability for different users because of dissimilar file access patterns followed and also because of differences between organizational structures followed. A weighted sum of the results of different heuristics achieves an efficient clustering of files by context.

Algorithm for layer 2

1) Coalesced session tree (CST) given as input to classifier (The classifier categorizes the input files). Files categorized on the basis of:

a. Locality
b. Creation time/date
c. Access Patterns
d. File Nomenclature
e. File Content
 3)
The resultant categories are returned as context related file sets.

Architecture Diagram
Implementation details

 For verifying the validity of the heuristics we implemented an event tracker that captured file events and generated a session tree for them. This event tracker was run on two test machines over a period of two days to collect file usage information. The session tree generated by the event tracker was then parsed and the frequency statistics were computed for various files forming a new collapsed tree. The various heuristics were applied to this resultant tree to cluster the files. The user task or job formed the basis of the file clusters.

The file system events were captured using Microsoft .NET’s FileSystemWatcher component. This was used to generate the session tree in XML.

Our XML was relatively simple: -

 <session id="24200453334">
 <clientid>100</clientid>

 <startdate>01-20-2004</startdate>

 <starttime>01:23:05</starttime>

 <node starttime=”01:34:54” startdate=”01-20-2004”>

<pid>121</pid>

<name>software.log</name>

<path>C:\\winnt\system32\config\software.log</path>

<ppid>223</ppid>

<weight>1</weight>

<appbit>0</appbit>

 </node>
</session>

Each file event was encapsulated into the node tag which contained the process id (pid), the name of the file that caused the event, the file path, the parent process id, the weight attached to each file node, a bit to indicate whether the node was a non-executable file or an executable application. This tree contained multiple nodes for the same file each time the file was accessed by the operating system. To reduce the redundancy of information and to compute the frequency characteristics, the above XML tree was collapsed into a collapsed session tree (cst) :-

<cst>

<node>

<name>software.log</name>

<path>C:\\winnt\system32\config\software.log</path>

<total_weight>0.9925373134328358</total_weight>

<frequency>1</frequency>

 </node>

</cst>
Here the total_weight tag was computed using the layer 1 algorithm described in our solution. Frequency contained the frequency of access of the file. The above file was then sorted on the basis of the total_weight and then used as a basis for file clustering.

We used WEKA data-mining software to mine the information stored in the cst. The data had to be preprocessed before applying certain heuristics, for instance for the location heuristic we had to separate the file name stored in the <path> tag from its file system path before feeding it to the classifier. We consider a sample scenario that was captured by the event tracker and is used to demonstrate our clustering.

Scenario

User A was working on a project on pediatric cardiology. He used 3 files, cmh.lnk, stateditor_design_1.0.doc, statwiz.doc. The first was to reach the hospital’s software, the second was the design document for the project and the third was a user manual. To the traditional file system the above three files are distinct and it assumes no relation between them. Using our clustering mechanism and our heuristics on location and frequency the three files were clustered. Thus while transferring one of the files to a remote machine the other two should also be transferred as they are most likely to be used in conjunction.

The sample clustering output is shown below: -

	location_cluster

	Name
	Path
	total_weight
	Freq

	Recent
	\documents and settings\administrator\application data\microsoft\office\
	0.9655172413793104
	2

	stateditor_design_1.0.doc
	\documents and settings\administrator\application data\microsoft\office\recent\
	0.972972972972973
	1

	cmh.lnk
	\documents and settings\administrator\application data\microsoft\office\recent\
	0.9767441860465116
	1

	statwiz.doc
	\documents and settings\administrator\application data\microsoft\office\recent\
	0.8571428571428571
	1

	index.dat
	\documents and settings\administrator\application data\microsoft\office\recent\
	0.9882352941176471
	3

In the above figure we see that since stateditor_design_1.0.doc, cmh.lnk, statwiz.doc is placed in the same cluster based on the path and frequency attribute. This allows us to send the three files as a single package even when one of them is requested by the user because it is most likely that the user will use the other two also.

Thus by using various combinations of our heuristics we can classify files with some precision.
4.
Conclusion

Files are related by the context they’re used in. Mining of relations between files and their use-contexts enable an intelligent management of files and overall organization of data. Collation of related files into contextual file clusters increases file-organization capabilities of the file system. A user may be pro-actively provided with all files he requires for a task via this enablement. Multiple management functions may be applied to these file clusters just like they are done for individual files.

Two layers are defined for this architecture make the job of information retrieval possible by giving the system the ability to recognize information. Data in the correct context becomes information, and relating files containing data to the appropriate context (the one they are use in) enables the system to identify the correct files required for a context. The first layer of the architecture makes a statistical analysis of the file access patterns, and the second layer uses those results along with the file attributes to cluster files according to context. The survey conducted validates the heuristics that are being implemented as context based file clustering algorithms in the layer 2. This gives the present passive file system the intelligence to actively organize user’s data.

References

[1] C. D. Tait and D. Duchamp. Detection and Exploitation of File Working Sets. In Proc. Eleventh Intl. Conf. on Distributed Computing Systems, pages 2-9. IEEE, May 1991.
[2] Nicolas Anquetil, Timothy Lethbridge. Extracting concepts from File names; a new file clustering criterion. The 20th International Conference on Software Engineering,

April 19 - 25, 1998
[3] Hu Lei, Carl Tait, Swarup Acharya, Henry Chang. Intelligent File Hoarding for Mobile Computers. 1995 ACM 0-89791-814-2/95/10 Pg 119

 [4] Hui Lei and Dan Duchamp. An Analytical Approach to File Prefetching. USENIX Annual Technical Conference CA, January 1997
[5] Meenakshi Arunachalam, Alok chaudhary, Brad Rullman. Implementation and Evaluation of Prefetching in the Intel Paragon Parallel File system. NSF Young Investigator Award CCR – 9357840.10th International Parallel Processing Symposium (IPPS '96) April 15 - 19, 1996
[6] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, Randolph Y. Wang. Serverless Network File Systems. 15th ACM Symposium on OS principles, Dec. 1995
[7] Harry Chen and Tim Finin. An Ontology for Context Aware Pervasive Computing Environments. IJCAI 03 workshop on Ontologies and distributed systems.
[8] P. Chan. A non-invasive learning approach to building web user profiles. KDD-99 Workshop on Web Usage Analysis and User Profiling,

pg. 7-12, 1999.
[9] Hyoung R. Kim and Philip K. Chan. Learning Implicit User Interest Hierarchy for Context in Personalization. IUI ’03, Jan 12-15,2003, Miami, Florida, USA; ACM 1 – 58113 – 586 – 6/03/0001
[10] Thomas M. Kroeger and Darell D. E. Long. The Case for Efficient File Access Pattern Modeling. The Seventh Workshop on Hot Topics in Operating Systems March 28 - 30, 1999
Root

MP3s

Programs

DOCs

Pictures

Layer 1: - Generate Session trees for file accesses. Give a frequency and recency of use analysis of files.

Layer 2: - Cluster files on the basis of related context by using various heuristics on information provided by layer 1

User interface to context related data.

Analysis results

 Operating System

File events

Context related file clusters

File set

Finalize event

User File request and Context

Ubiquitous Computing Architecture

File set lookup and response

File request and File set response.

 File set

Resolver to resolve

File requests into File sets

Context related file Set cache

Coalesced session tree

Heuristic based Classifier

Collapser

Collapsed Session tree cache

Collapse event

Store session tree

Read Session tree

Session Tree Cache

OS File events

Event Tracker and Tree Generator

Logout Event

Client Management System

Cluster

